top of page
NEWSFEED

05 - 06 Aug 2021

NEWS ARTICLE_

Alcune indicazioni operative

05 - 06 Aug. 2021

NEWS ARTICLE_

Gestione delle giornate del 5 e 6 agosto 2021, nel quadro delle attività di CLIMATE4FUTURE   2021

Qualche ragionamento sui nostri amici pipistrelli e sulla loro storia evolutiva.

 

Come tutti imammiferi ebbero grandi vantaggi dalla scomparsa dei dinosauri e, in questo caso, dei rettili volanti. Ma leggiamo cosa ci viene proposto in merito....

 

 

............................................................

 

Fossil Evidence and the Origin of Bats

Journal of Mammalian Evolution volume 12, pages209–246 (2005)Cite this article

Abstract

The phylogenetic and geographic origins of bats (Chiroptera) remain unknown. The earliest confirmed records of bats date from the early Eocene (approximately 51 Ma) in North America with other early Eocene bat taxa also being represented from Europe, Africa, and Australia. Where known, skeletons of these early taxa indicate that many of the anatomical specializations characteristic of bats had already been achieved by the early Eocene, including forelimb and manus elongation in conjunction with structural changes in the pectoral skeleton, hind limb reorientation, and the presence of rudimentary echolocating abilities. By the middle Eocene, the diversification of bats was well underway with many modern families being represented among fossil forms. A new phylogenetic analysis indicates that several early fossil bats are consecutive sister taxa to the extant crown group (including megabats), and suggests a single origin for the order, at least by the late Paleocene. Although morphological studies have long placed bats in the Grandorder Archonta, (along with primates dermopterans, and tree shrews), recent molecular studies have refuted this hypothesis, instead strongly supporting placement of bats in Laurasiatheria. Primitively, proto-bats were likely insectivorous, under-branch hangers and elementary gliders that exploited terminal branch habitats. Recent work has indicated that a number of other mammalian groups began to exploit similar arboreal, terminal branch habitats in the Paleocene, including multituberculates, eulipotyphlans, dermopterans, and plesiadapiforms. This may offer an ecological explanation for morphological convergences that led to the erroneous inclusion of bats within Archonta: ancestral archontan groups as well as proto-bats apparently were exploiting similar arboreal habitats, which may have led to concurrent development of homoplasic morphological attributes.

This is a preview of subscription content, access via your institution.

ITA - Le origini filogenetiche e geografiche dei pipistrelli (Chiroptera) rimangono sconosciute. Le prime registrazioni confermate di pipistrelli risalgono al primo Eocene (circa 51 Ma) in Nord America con altri taxa di pipistrelli del primo Eocene rappresentati anche da Europa, Africa e Australia. Ove noto, gli scheletri di questi primi taxa indicano che molte delle specializzazioni anatomiche caratteristiche dei pipistrelli erano già state raggiunte nel primo Eocene, tra cui l'allungamento della mano e della zampa anteriore in concomitanza con i cambiamenti strutturali nello scheletro pettorale, il riorientamento degli arti posteriori e la presenza di rudimentali capacità di ecolocalizzazione. Nell'Eocene medio, la diversificazione dei pipistrelli era ben avviata con molte famiglie moderne rappresentate tra le forme fossili. Una nuova analisi filogenetica indica che diversi primi pipistrelli fossili sono taxa fratelli consecutivi del gruppo del quadro di insieme esistente (compresi i megabat) e suggerisce un'unica origine per l'ordine, almeno dal tardo Paleocene. Sebbene gli studi morfologici abbiano a lungo collocato i pipistrelli nel Grandorder Archonta, (insieme ai primati dermotteri e ai toporagni), recenti studi molecolari hanno confutato questa ipotesi, sostenendo invece con forza il posizionamento dei pipistrelli nella Laurasiatheria. Primitivamente, i proto-pipistrelli erano probabilmente insettivori,appesi sotto i rami e con voli elementari che sfruttavano gli habitat dei rami terminali. Un lavoro recente ha indicato che un certo numero di altri gruppi di mammiferi ha iniziato a sfruttare simili habitat arboricoli di rami terminali nel Paleocene, inclusi multitubercolati, eulipotyphlans, dermopterans e plesiadapiforms. Ciò può offrire una spiegazione ecologica per le convergenze morfologiche che hanno portato all'errata inclusione dei pipistrelli all'interno di Archonta: i gruppi ancestrali di archonta così come i proto-pipistrelli apparentemente stavano sfruttando habitat arboricoli simili, il che potrebbe aver portato allo sviluppo simultaneo di attributi morfologici omoplastici.

...

Listen carefully on a quiet summer night and you might hear them. Even if you don’t see a bat’s frantically fluttering form, you might catch its high-pitched chirp as it searches the night for dinner. You’re probably hearing a little brown bat, a common insect-eater found throughout North America, but it is just one of more than a thousand species of bat ranging from the one-inch-long Kitti’s hog-nosed bat to the enormous, three-pound giant golden-crowned flying fox.

Large or small, bats suffer a reputation problem. Aside from being associated with vampires, they’re often called “flying rats” and blamed for the spread of zoonotic diseases into humans (including COVID-19, though whether that blame is founded is as of yet unclear.) This fear often overshadows the fascinating fact that bats are the only mammals to have evolved powered flight, and they’ve been flapping around for tens of millions of years. Where, then, did these flying oddities come from?

Report this ad

Bats pop up in the fossil record around 50 million years ago during a time known as the Eocene. Paleontologists have recovered remains ranging from teeth and bits of jaw to stunning full skeletons in places as far-flung as Wyoming, Paris, Australia and India’s Vastan Mine.

Onychonycteris from Fossil Butte National Monument Wiki Commons

There are some differences between the oldest bats and their modern relatives. Based upon the ear anatomy of the better-preserved specimens, for example, scientists know that the first bats couldn’t echolocate. They relied on sight, smell and touch to find their meals. While modern bats have a claw only on the equivalent of our thumb, earlier bats kept some of the additional finger claws inherited from their ancestors. A fossil bat dating to about 52 million years ago, dubbed Onychonycteris finneryi in 2008, had claws on all five of its fingers. New technology has added a few details to the early bat story, too. A recent study of coloration in the fossil record found that two 48 million-year-old bats found in Germany were mostly brown.

Despite these strides, scientists are left with some big questions. For one thing: The 50-million-year-old bat specimens are already recognizable as bats, so where did they come from? When, where, why and how the first bats become airborne is another mystery buried by Deep Time.

Paleontologists are familiar with such conundrums. For decades, anatomists and zoologists were confounded by the origin of whales. Then, at the end of the 20th century, a wealth of fossil finds provided a detailed outline of how hoofed land mammals became the sea’s largest swimmers. Birds presented a similar problem, with their origin from an unknown reptile ancestor stumping experts until some new ideas about the “terrible lizards” and amazing fossil finds proved that birds are living dinosaurs. Until recently, turtles presented an odd case similar to that of bats; the shelled reptiles seemed to appear out of nowhere in the fossil record. During the past two decades, experts have identified new species of transitional turtles and revised their opinions of already-known species to explain how turtles got their shells.

Spectacled flying fox CSIRO

Report this ad

Each of these puzzling paleontological examples involved a major change in how the animals lived. Whales moved from the land to the ocean, birds started as terrestrial dinosaurs and took to the air and turtles were terrestrial reptiles that started burrowing underground. Bats follow the trend, undoubtedly starting from terrestrial mammal ancestors. The question is where the missing examples of early bats may be found.

“The short answer is, we don’t know why there is a missing record of ten million years,” says University of Birmingham paleontologist Emily Brown. Several factors may be at play, according to an assessment of the bat fossil record Brown and colleagues published last year.

Early bats’ choice of dwelling may have been a barrier to their preservation. “It’s previously been suggested that early bats may have predominantly lived in forested environments, which do not have very good preservation potential,” Brown says. Her survey found that the fossil record of modern bats that live in forests and jungles is largely incomplete, probably for the same reason.

The bats that modern scientists know best lived in places where rapid and delicate preservation entombed the tiny mammals. Some of the bones of Icaronycteris index, one of the earliest known bats and a neighbor of Onychonycteris, are as thin as a human hair. The only reason we know about these bats is that they lived around lakes that favored exceptional preservation; the fine sediment and oxygen-depleted water on the lake bottoms allowed fossils to be buried quickly in an environment scavengers and other decomposers couldn’t reach.

Brown says teeth make up most of the bat fossil record. Scientists often don’t have a clear picture of fossil bats unless they were preserved at exceptional sites that yield complete or articulated skeletons. It’s these types of deposits, called lagerstatten, that paleontologists will have to find to solve the mystery. The only way to understand when bats first appeared, how they evolved to fly, and more, Brown says, is to find more of these exceptional sites from rocks 50 to 66 million years old.

Icaronycteris fossil Wiki Commons / Andrew Savedra

Report this ad

Refining our sense of what an early proto-bat might look like is also essential. The current record doesn’t offer many hints. Consider Onychonycteris, one of the oldest known bats featuring some of the most complete remains. While this mammal has more primitive limb proportions and claws on its fingers, says Royal Ontario Museum paleontologist Kevin Seymour, “it is still a bat.” The closest paleontologists can get to understanding this animal is looking at living mouse-tailed bats, Seymour notes, which use a combination of fluttering and gliding to move through the air.

What came before is only speculative. Bats are mammals, and so the earliest bats were certainly furry. Based on finds such as Onychonycteris, it’s reasonable to propose that bats went through a gliding stage before powered flight, Seymour says, and the first bats probably were insectivores. But that’s about all scientists can say with confidence without a relatively complete fossil to fill in the gap “It will certainly require articulated material,” Seymour says, relatively complete fossils acting as keystones to the tiny fossils of Paleocene and Eocene mammals that may already be resting in museums drawers.

While experts search for the relevant fossils, other mammals may offer a rough guide of what to expect. Bats may be the only mammals to evolve powered flapping flight, but other mammal species from flying squirrels to a lemur-like creature called the colugo can glide through the air on expanded membranes. The earliest bats probably evolved along a similar route, with some extra skin allowing them to move from tree to tree.

New information about existing fossils buttresses the idea that the earliest bats scampered around in the trees. In 2013, paleontologists Kevin Padian and Kenneth Dial presented research at the annual Society of Vertebrate Paleontology meeting that noted some of the earliest bats had hindlimbs that flexed to the side, rather than aligning directly beneath the body. This arrangement is more consistent with climbing rock faces and trees than walking on the ground. Searching for more tree-living beasts will help connect the fossil dots.

Report this ad

At least paleontologists know which time frame to investigate. Some of the oldest known bats are not single skeletons, but made up bat communities of multiple species. This means that bats were already diversifying by 50 million years ago and that their ancestors are much older–perhaps springing up after the extinction that wiped out the non-avian dinosaurs 66 million years ago. Proto-bats are going to be found in rocks from that window of time when a strange group of mammals was just starting to take wing.

...

References

  • Arnason, U., Adegoke, J. A., Bodin, K., Born, E. W., Esa, Y. B., Gullberg, A., Nilsson, M., Short, R. V., Xu, X., and Janke, A. (2002). Mammalian mitogenomic relationships and the root of the eutherian tree. Proc. Natl. Acad. Sci. U.S.A 99: 8151.

    Google Scholar 

  • Arroyo-Cabrales, J., Gregorin, R., Schlitter, D. A., and Walker, A. (2002). The oldest African molossid bat cranium (Chiroptera: Molossidae). J. Vertebr. Paleontol. 22: 380.

    Google Scholar 

  • Beard, K. C. (1993). Origin and evolution of gliding in early Cenozoic Dermoptera (Mammalia, Primatomorpha). In: Primates and Their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., pp. 63–90, Plenum, New York.

    Google Scholar 

  • Beard, K. C., Sigé, B., and Krishtalka, L. (1992). A primitive vespertilionoid bat from the early Eocene of central Wyoming. C. R. Acad. Sci. Paris 314: 735.

    CAS Google Scholar 

  • Benammi, M., Chaimanee, Y., Jaeger, J.-J., Suteethorn, V., and Ducrocq, S. (2001). Eocene Krabi basin (southern Thailand): Paleontology and magnetostratigraphy. Geol. Soc. Amer. Bull. 113: 265.

    Article Google Scholar 

  • Bloch, J. I., and Boyer, D. M. (2002). Grasping primate origins. Science 298: 1606.

    Article PubMed CAS Google Scholar 

  • Bloch, J. I., and Boyer, D. M. (2003). Response to comment on “Grasping Primate Origins.” Science 300: 741.

    Google Scholar 

  • Bremer, K. (1988). The limits of amino acid sequence data in angiosperm phylogenetic reconstructions. Evolution 42: 795.

    CAS Google Scholar 

  • Butler, P. M. (1978). Insectivora and Chiroptera. In: Evolution of African Mammals, V. J. Maglio and H. B. S. Cooke, eds., pp. 56–68, Harvard University Press, Cambridge.

    Google Scholar 

  • Butler, P. M. (1984). Macroscelidea, Insectivora and Chiroptera from the Miocene of East Africa. Palaeovertebrata 14: 117.

    Google Scholar 

  • Ciochon, R. L., and Gunnell, G. F. (2004). Eocene large-bodied primates of Myanmar and Thailand: Morphological considerations and phylogenetic affinities. In: Anthropoid Origins: New Visions, C. F. Ross and R. F. Kay, eds., pp. 237–270, Kluwer Academic/Plenum Publishers, New York.

    Google Scholar 

  • Czaplewski, N. J., and Morgan, G. S. (2000). A new vespertilionid bat (Mammalia: Chiroptera) from the early Miocene (Hemingfordian) of Florida, USA. J. Vertebr. Paleontol. 20: 736.

    Google Scholar 

  • Czaplewski, N. J., and Morgan, G. S. (2002). Phyllostomid bats from the Oligocene and early Miocene of Florida. J. Vertebr. Paleontol. 22: 48A.

    Google Scholar 

  • Czaplewski, N. J., Morgan, G. S., and Naeher, T. (2003). Molossid bats from the late Tertiary of Florida with a review of the Tertiary Molossidae of North America. Acta Chiropt. 5: 61.

    Google Scholar 

  • Czaplewski, N. J., Takai, M., Naeher, T. M., Shigehara, N., and Setoguchi, T. (2003). Additional bats from the middle Miocene La Venta Fauna of Colombia. Rev. Acad. Colomb. Cienc. 27: 263.

    Google Scholar 

  • Douady, C. J., Chatelier, P. I., Madsen, O., de Jong, W. W., Catzeflis, F., Springer, M. S., and Stanhope, M. J. (2002). Molecular phylogenetic evidence confirming the Eulipotyphla concept and in support of hedgehogs as the sister group to shrews. Mol. Phylogenet. Evol. 25: 200.

    PubMed CAS Google Scholar 

  • Ducrocq, S., Jaeger, J.-J., and Sigé, B. (1993). Un mégachiroptère dans l'Eocène supérieur de Thaïlande—Incidence dans la discussion phylogénique du groupe. N. J. Geol. Paläont. Mh. 9: 561.

    Google Scholar 

  • Galbreath, E. C. (1962). A new myotid bat from the middle Oligocene of northeastern Colorado. Trans. Kansas Acad. Sci. 65: 448.

    Google Scholar 

  • Gingerich, P. D. (1987). Early Eocene bats (Mammalia, Chiroptera) and other vertebrates in freshwater limestones of the Willwood Formation, Clark's Fork Basin, Wyoming. Contrib. Mus. Paleontol. Univ. Mich. 27: 275.

    Google Scholar 

  • Gregory, W. K. (1910). The orders of mammals. Bull. Am. Mus. Nat. Hist. 27: 1.

    Google Scholar 

  • Gunnell, G. F., Jacobs, B. F., Herendeen, P. S., Head, J. J., Kowalski, E., Msuya, C. P., Mizambwa, F. A., Harrison, T., Habersetzer, J., and Storch, G. (2003). Oldest placental mammal from sub-Saharan Africa: Eocene microbat from Tanzania—Evidence for early evolution of sophisticated echolocation. Palaeontol. Elect. 5: 1.

    Google Scholar 

  • Habersetzer, J., and Storch, G. (1987). Klassifikation und funktionelle Flügelmorphologie paläogener Fledermäuse (Mammalia, Chiroptera). Cour. Forsch.—Inst. Senckenberg 91: 117.

    Google Scholar 

  • Habersetzer, J., and Storch, G. (1989). Ecology and echolocation of the Eocene Messel bats. In: European Bat Research 1987, V. Hanák, I. Horáek, and J. Gaisler, eds., pp. 213–233, Charles University Press, Praha.

    Google Scholar 

  • Habersetzer, J., and Storch, G. (1992). Cochlea size in extant Chiroptera and middle Eocene microchiropterans from Messel. Naturwiss 79: 462.

    Google Scholar 

  • Hand, S. J. (1993). First skull of a species of Hipposideros (Brachipposideros) (Microchiroptera: Hipposideridae) from Australian Miocene sediments. Mem. Queensland Mus. 33: 179.

    Google Scholar 

  • Hand, S. J. (1996). New Miocene and Pliocene megadermatids (Mammalia, Microchiroptera) from Australia, with comments on broader aspects of megadermatid evolution. Geobios 29: 365.

    Article Google Scholar 

  • Hand, S. J. (1997a). Hipposideros bernardsigei, a new hipposiderid (Microchiroptera) from the Miocene of Australia and a reconsideration of the monophyly of related species groups. Münch. Geowiss. Abh. A 34: 73.

    Google Scholar 

  • Hand, S. J. (1997b). New Miocene leaf-nosed bats (Microchiroptera: Hipposideridae) from Riversleigh, northwestern Queensland. Mem. Queensland Mus. 41: 335.

    Google Scholar 

  • Hand, S. J. (1997c). Miophyllorhina riversleighensis gen. et sp. nov., a Miocene leaf-nosed bat (Microchiroptera: Hipposideridae) from Riversleigh, Queensland. Mem. Queensland Mus. 41: 351.

    Google Scholar 

  • Hand, S. J. (1998a). Xenorhinos, a new genus of Old World leaf-nosed bats (Microchiroptera: Hipposideridae) from the Australian Miocene. J. Vertebr. Paleontol. 18: 430.

    Article Google Scholar 

  • Hand, S. J. (1998b). Riversleigha williamsi gen. et sp. nov., a large Miocene hipposiderid (Microchiroptera) from Riversleigh, Queensland. Alcheringa 22: 259.

    Article Google Scholar 

  • Hand, S. J., and Kirsch, J. A. W. (2003). Archerops, a new annectent hipposiderid genus (Mammalia: Microchiroptera) from the Australian Miocene. J. Paleontol. 77: 1139.

    Google Scholar 

  • Hand, S. J., Archer, M., and Godthelp, H. (1997). First record of Hydromops (Microchiroptera: Molossidae) from Australia: Its biocorrelative significance. In: Actes du Congrès BiochroM'97, J.-P. Aguilar, S. Legendre, and J. Michaux, eds., Mém. Trav. E. P. H. E., Inst. Montpellier 21: 153.

  • Hand, S. J., Murray, P., Megirian, D., Archer, M., and Godthelp, H. (1998). Mystacinid bats (Microchiroptera) from the Australian Tertiary. J. Paleontol. 72: 538.

    Google Scholar 

  • Hand, S., Novacek, M., Godthelp, H., and Archer, M. (1994). First Eocene bat from Australia. J. Vertebr. Paleontol. 14: 375.

    Article Google Scholar 

  • Hill, J. E., and Smith, J. D. (1984). Bats: A Natural History, British Museum (Natural History), London.

  • Hoofer, S. R., Reeder, S. A., Hansen, E. W., and Van Den Bussche, R. A. (2003). Molecular phylogenetics and taxonomic review of noctilionoid and vespertilionoid bats (Chiroptera, Yangochiroptera). J. Mammal. 84: 809.

    Article Google Scholar 

  • Hoofer, S. R., and Van Den Bussche, R. A. (2001). Phylogenetic relationships of plecotine bats and allies based on mitochondrial ribosomal sequences. J. Mammal. 82: 131.

    Article Google Scholar 

  • Hooker, J. J. (1996). A primitive emballonurid bat (Chiroptera, Mammalia) from the earliest Eocene of England. Palaeovertebrata 25: 287.

    Google Scholar 

  • Hooker, J. J. (2001). Tarsals of the extinct insectivoran family Nyctitheriidae (Mammalia): Evidence for archontan relationships. Zool. J. Linn. Soc. 132: 501.

    Article Google Scholar 

  • Hulva, P., and Horacek, I. (2002). Craseonycteris thonglongyai (Chiroptera: Craseonycteridae) is a rhinolophoid: Molecular evidence from cytochrome b. Acta Chiropt 4: 107.

    Google Scholar 

  • Hutcheon, J. M., Kirsch, J. A. W., and Pettigrew, J. D. (1998). Base compositional biases and the bat problem. III. The question of microchiropteran monophyly. Philos. Trans. Roy. Soc. Lond. B 353: 607.

    CAS Google Scholar 

  • Jenkins, F. A. Jr., and Krause, D. W. (1983). Adaptations for climbing in North American Multituberculates (Mammalia). Science 220: 712.

    PubMed Google Scholar 

  • Jepsen, G. L. (1966). Early Eocene bat from Wyoming. Science 154: 1333.

    PubMed CAS Google Scholar 

  • Jepsen, G. L. (1970). Bat origins and evolution. In: Biology of Bats 1, W. A. Wimsatt, ed., pp. 1–64, Plenum, New York.

    Google Scholar 

  • Kirsch, J. A. W. (1996). Bats are monophyletic; megabats are monophyletic; but are microbats also? Bat Res. News 36: 78.

    Google Scholar 

  • Legendre, S. (1984). Identification de deux sous-genres fossiles et comprehension phylogénique du genre Mormopterus (Molossidae, Chiroptera). C. R. Acad. Sci. Paris 298: 715.

    Google Scholar 

  • Legendre, S. (1985). Molossidés (Mammalia, Chiroptera) cénozoïques de l'Ancien et du Nouveau Monde; statut systématique; integration phylogénique des données. N. Jb. Geol. Paläont. Abh. 170: 205.

    Google Scholar 

  • Maddison, W. P., and Maddison, D. R. (1992). MacClade: Analysis of Phylogeny and Character Evolution, Version 3.0, Sunderland, Sinauer Associates, Massachusetts.

  • Matthew, W. D., and Granger, W. (1921). New genera of Paleocene mammals. Am. Mus. Novit 13: 1.

    Google Scholar 

  • McKenna, M. C., and Bell, S. K. (1997). Classification of Mammals Above the Species Level, Columbia University Press, New York.

    Google Scholar 

  • Meschinelli, L. (1903). Un nuovo Chirottero fossile (Archaeopteropus transiens Mesch). dell ligniti di Monteviale. Atti Reale Ist. Veneto Sci., Lettere ed Arti 62: 1329.

    Google Scholar 

  • Miyamoto, M. M. (1996). A congruence study of molecular and morphological data for eutherian mammals. Mol. Phylogenet. Evol. 6: 373.

    PubMed CAS Google Scholar 

  • Miyamoto, M. M., Porter, C., and Goodman, M. (2000). cMyc gene sequences and the phylogeny of bats and other eutherian mammals. Syst. Biol. 49: 501.

    PubMed CAS Google Scholar 

  • Morgan, G. S. (2002). New bats in the Neotropical families Emballonuridae and Mormoopidae from the Oligocene and Miocene of Florida, and the biochronology of Florida Whitneyan, Arikareean, and Hemingfordian faunas. J. Vertebr. Paleontol. 22: 90A

    Google Scholar 

  • Morgan, G. S., and Czaplewski, N. J. (2003). A new bat (Chiroptera: Natalidae) from the early Miocene of Florida, with comments on natalid phylogeny. J. Mammal. 84: 729.

    Article Google Scholar 

  • Murphy, W. J., Eizirik, E., Johnson, W. E., Zhang, Y. P., Ryder, O. A., and O'Brien, S. J. (2001). Molecular phylogenetics and the origin of placental mammals. Nature 409: 614.

    Article PubMed CAS Google Scholar 

  • Novacek, M. J. (1985). Evidence for echolocation in the oldest known bats. Nature 315: 140.

    Article PubMed CAS Google Scholar 

  • Novacek, M. J. (1987). Auditory features and affinities of the Eocene bats Icaronycteris and Palaeochiropteryx (Microchiroptera, incertae sedis). Am. Mus. Novit. 2877: 1.

    Google Scholar 

  • Novacek, M. J., Wyss, A. R., and McKenna, M. C. (1988). The major groups of eutherian mammals. In: The Phylogeny and Classification of the Tetrapods 2, M. J. Benton, ed., pp. 31–71, Clarendon Press, Oxford.

    Google Scholar 

  • de Paula Couto, C. (1956). Une chauve-souris fossile des argiles feuilletées pléistocènes de Tremembé, Etat de Sao Paulo (Brésil). Act. 4th Congr. Internatl. Quat. Rome, pp. 343–347.

  • Pettigrew, J. D. (1986). Flying primates? Megabats have the advanced pathway from eye to midbrain. Science 231: 1304.

    PubMed CAS Google Scholar 

  • Pettigrew, J. D. (1995). Flying primates: Crashed or crashed through? In: Ecology, Evolution and Behavior of Bats, P. A. Racey and S. M. Swift, eds., Symp. Zool. Soc. Lond. 67: 3.

  • Pettigrew, J. D., Jamieson, B. G. M., Robson, S. K., Hall, L. S., McAnally, K. I., and Cooper, H. M. (1989). Phylogenetic relations between microbats, megabats and primates (Mammalia: Chiroptera and Primates). Philos. Trans. R. Soc. Lond. B 325: 489.

    CAS Google Scholar 

  • Pirlot, P. (1977). Wing design and the origin of bats. In: Major Patterns in Vertebrate Evolution, M. K. Hecht, P. C. Goody, and B. M. Hecht, eds., pp. 375–410, Plenum, New York.

    Google Scholar 

  • Polly, P. D., Le Comber, S. C., and Burland, T. M. (2005). On the occlusal fit of tribosphenic molars: Are we underestimating species diversity in the Mesozoic? J. Mammal. Evol. 12: 285–301.

    Google Scholar 

  • Remy, J. A., Crochet, J-Y., Sigé, B., Sudre, J., de Bonis, L., Vianey-Liaud, M., Godinot, M., Hartenberger, J.-L., Lange-Badré, B., and Comte, B. (1987). Biochronologie des phosphorites du Quercy: Mise à jour des listes fauniques et nouveaux gisements de mammifères fossiles. Münchner Geowiss. Abh. 10: 169.

    Google Scholar 

  • Rose, K. D. (1981). The Clarkforkian Land-Mammal Age and mammalian faunal composition across the Paleocene-Eocene boundary. Univ. Mich. Pap. Paleontol. 26: 1.

    Google Scholar 

  • Russell, D. E., and Gingerich, P. D. (1981). Lipotyphla, Proteutheria (?), and Chiroptera (Mammalia) from the early-middle Eocene Kuldana Formation of Kohat (Pakistan). Contrib. Mus. Paleontol. Univ. Mich. 25: 277.

    Google Scholar 

  • Russell, D. E., Louis, P., and Savage, D. E. (1973). Chiroptera and Dermoptera of the French Early Eocene. Univ. Calif. Publ. Geol. Sci. 95: 1.

    Google Scholar 

  • Schutt, W. A. Jr., and Simmons, N. B. (1998). Morphology and homology of the chiropteran calcar, with comments on the phylogenetic relationships of Archaeopteropus. J. Mamm. Evol. 5: 1.

    Google Scholar 

  • Sigé, B. (1985). Les chiroptères oligocènes du Fayum, Egypte. Geol. et Palaeontol. 19: 161.

    Google Scholar 

  • Sigé, B. (1990). Nouveaux chiroptères de l'Oligocène moyen des phosphorites du Quercy, France. C. R. Acad. Sci. Paris 310: 1131.

    Google Scholar 

  • Sigé, B. (1991). Rhinolophoidea et Vespertilionoidea (Chiroptera) du Chambi (Eocène inférieur de Tunisie). Aspects biostratigraphique, biogéographique et paléoécologique de l'origine des chiroptères modernes. N. Jb. Geol. Paläont. Abh. 182: 355.

    Google Scholar 

  • Sigé, B., Thomas, H., Sen, S., Gheerbrant, E., Roger, J., and Al-Sulaimani, Z. (1994). Les chiroptères de Taqah (Oligocène inférieur, Sultanat d'Oman). Premier inventaire systématique. Münchner Geowiss. Abh. 26: 35.

    Google Scholar 

  • Simmons, N. B. (1993). The importance of methods: Archontan phylogeny and cladistic analysis of morphological data. In: Primates and Their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., pp. 1–61, Plenum, New York.

    Google Scholar 

  • Simmons, N. B. (1994). The case for chiropteran monophyly. Am. Mus. Novit. 3103: 1.

    Google Scholar 

  • Simmons, N. B. (1995). Bat relationships and the origin of flight. In: Ecology, Evolution and Behavior of Bats, P. A. Racey and S. M. Swift, eds., Symp. Zool. Soc. Lond. 67: 27.

  • Simmons, N. B. (1998). A reappraisal of interfamilial relationships of bats. In: Bat Biology and Conservation, T. H. Kunz and P. A. Racey, eds., pp. 1–26, Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Simmons, N. B. (2005a). Chiroptera. In: The Rise of Placental Mammals, K. D. Rose and J. D. Archibald, eds., pp. 159–174, Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Simmons, N. B. (2005b). Order Chiroptera. In: Mammal Species of the World: A Taxonomic and Geographic Reference, D. E. Wilson and D. M. Reeder, eds., Smithsonian Institution Press, Washington, DC.

  • Simmons, N. B., and Geisler, J. H. (1998). Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bull. Am. Mus. Nat. Hist. 235: 1.

    Google Scholar 

  • Simmons, N. B., and Geisler, J. H. (2002). Sensitivity analysis of different methods of coding taxonomic polymorphism: An example from higher level bat phylogeny. Cladistics 18: 571.

    Google Scholar 

  • Simmons, N. B., and Quinn, T. H. (1994). Evolution of the digital tendon locking mechanism in bats and dermopterans: A phylogenetic perspective. J. Mammal. Evol. 2: 231.

    Article Google Scholar 

  • Simpson, G. G. (1967). The Tertiary lorisiform primates of Africa. Bull. Mus. Comp. Zool. Harv. 136: 39.

    Google Scholar 

  • Smith, J. D. (1977). Comments on flight and the evolution of bats. In: Major Patterns in Vertebrate Evolution, M. K. Hecht, P. C. Goody, and B. M. Hecht, eds., pp. 427–437, Plenum, New York.

    Google Scholar 

  • Smith, J. D., and Madkour, G. (1980). Penal morphology and the question of chiropteran phylogeny. In: Proceedings of the Fifth International Bat Research Conference, D. E. Wilson and A. L. Gardner, eds., pp. 347–365, Texas Tech Press, Lubbock.

  • Springer, M. S., Teeling, E. C., Madsen, O., Stanhope, M. J., and de Jong, W. W. (2001). Integrated fossil and molecular data reconstruct bat echolocation. Proc. Natl. Acad. Sci. U. S. A. 98: 6241.

    Article PubMed CAS Google Scholar 

  • Storch, G. (1999). Order Chiroptera. In: The Miocene Land Mammals of Europe, G. E. Rossner and K. Heissig, eds., pp. 81–90, Verlag Dr. Friedrich Pfeil, München.

    Google Scholar 

  • Storch, G., Sigé, B., and Habersetzer, J. (2002). Tachypteron franzeni n. gen., n. sp., earliest emballonurid bat from the middle Eocene of Messel (Mammalia, Chiroptera). Paläont. Zeit. 76: 189.

    Google Scholar 

  • Storer, J. E. (1996). Eocene-Oligocene faunas of the Cypress Hills Formation, Saskatchewan. In: The Terrestrial Eocene-Oligocene Transition in North America, D. R. Prothero and R. J. Emry, eds., pp. 240–261, Cambridge University Press, Cambridge.

    Google Scholar 

  • Swofford, D. L. (2002). PAUP ∗. Phylogenetic Analysis Using Parsimony (∗ and Other Methods), Version 4, Sinauer Associates, Sunderland, Massachusetts.

  • Szalay, F. S., and Drawhorn, G. (1980). Evolution and diversification of the Archonta in an arboreal milieu. In: Comparative Biology and Evolutionary Relationships of Tree Shrews, W. P. Luckett, ed., pp. 133–169, Plenum, New York.

    Google Scholar 

  • Szalay, F. S., and Lucas, S. G. (1993). Cranioskeletal morphology of archontans, and diagnoses of Chiroptera, Volitantia, and Archonta. In: Primates and Their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., pp. 187–226, Plenum, New York.

    Google Scholar 

  • Szalay, F. S., and Lucas, S. G. (1996). The postcranial morphology of Paleocene Chriacus and Mixodectes and the phylogenetic relationships of archontan mammals. Bull. New Mex. Mus. Nat. Hist. Sci 7: 1.

    Google Scholar 

  • Teeling, E. C., Scully, M., Kao, D. J., Romagnoli, M. L., Springer, M. S., and Stanhope, M. J. (2000). Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403: 188.

    PubMed CAS Google Scholar 

  • Teeling, E. C., Madsen, O., Van Den Bussche, R. A., de Jong, W. W., Stanhope, M. J., and Springer, M. S. (2002). Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophid microbats. Proc. Natl. Acad. Sci. U. S. A. 99: 1431.

    Article PubMed CAS Google Scholar 

  • Thewissen, J. G. M., and Babcock, S. K. (1991). Distinctive cranial and cervical innervation of wing muscles: New evidence for bat monophyly. Science 251: 934.

    PubMed CAS Google Scholar 

  • Thewissen, J. G. M., and Babcock, S. K. (1993). The implications of the propatagial muscles of flying and gliding mammals for archontan systematics. In: Primates and Their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., pp. 91–109, Plenum, New York.

    Google Scholar 

  • Tong, Y. (1997). Middle Eocene small mammals from Liguanqiao Basin of Henan Province and Yuanqu Basin of Shanxi Province, central China. Paleontol. Sin. 26: 1.

    Google Scholar 

  • Van Den Bussche, R. A., and Hoofer, S. R. (2000). Further evidence for inclusion of the New Zealand short tailed bat (Mystacina tuberculata) within Noctilionoidea. J. Mammal. 81: 865.

    Article Google Scholar 

  • Van Den Bussche, R. A., and Hoofer, S. R. (2001). Evaluating monophyly of Nataloidea (Chiroptera) with mitochondrial DNA sequences. J. Mammal. 83: 320.

    Google Scholar 

  • Van Den Bussche, R. A., and Hoofer, S. R. (2004). Phylogenetic relationships among recent chiropteran families and the importance of choosing appropriate out-group taxa. J. Mammal. 85: 321.

    Article Google Scholar 

  • Van Den Bussche, R. A., Hoofer, S. R., and Hansen, E. W. (2002). Characterization and phylogenetic utility of the mammalian protamine P1 gene. Mol. Phylogenet. Evol. 22: 333.

    PubMed CAS Google Scholar 

  • Van Den Bussche, R. A., Reeder, S. A., Hansen, E. W., and Hoofer, S. R. (2003). Utility of the dentin matrix protein 1 (DMP1) gene for resolving mammalian intraordinal relationships. Mol. Phylogenet. Evol. 26: 89.

    PubMed CAS Google Scholar 

  • Wible, J. R., and Novacek, J. M. (1988). Cranial evidence for the monophyletic origin of bats. Am. Mus. Novit. 2911: 1.

    Google Scholar 

  • Yang, J. (1977). On some Salientia and Chiroptera from Shanwang, Linqu Shandong. Vert. PalAs. 15: 76 (in Chinese).

Download references

Author information

Authors and Affiliations

  1. Museum of Paleontology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, Michigan, 48109-1079, USA

    Gregg F. Gunnell

  2. Division of Vertebrate Zoology, Department of Mammalogy, American Museum of Natural History, New York, New York, USA.

...............................................................................................................................................

Fossil Evidence and the Origin of Bats

 

Le origini filogenetiche e geografiche dei pipistrelli (Chiroptera) rimangono sconosciute. Le prime registrazioni confermate di pipistrelli risalgono al primo Eocene (circa 51 Ma) in Nord America con altri taxa di pipistrelli del primo Eocene ritrovati anche in Europa, Africa e Australia. Ove noto, gli scheletri di questi primi taxa indicano che molte delle specializzazioni anatomiche caratteristiche dei pipistrelli erano già state raggiunte dal primo Eocene, tra cui l'allungamento della zampa anteriore e dell'articolazione in concomitanza con i cambiamenti strutturali nello scheletro pettorale, il riorientamento degli arti posteriori e la presenza di rudimentali capacità di ecolocalizzazione. Nell'Eocene medio, la diversificazione dei pipistrelli era ben avviata con molte famiglie moderne rappresentate tra le forme fossili. Una nuova analisi filogenetica indica che diversi primi pipistrelli fossili sono taxa fratelli consecutivi del gruppo esistente (compresi i megabat) e suggerisce un'unica origine per l'ordine, almeno dal tardo Paleocene. Sebbene gli studi morfologici abbiano a lungo collocato i pipistrelli nel Grandorder Archonta, (insieme ai primati dermotteri e ai toporagni), recenti studi molecolari hanno confutato questa ipotesi, sostenendo invece con forza il posizionamento dei pipistrelli nella Laurasiatheria. Primitivamente, i proto-pipistrelli erano probabilmente insettivori, aggrappati sotto i rami con voli elementari che sfruttavano gli habitat dei rami terminali. Un lavoro recente ha indicato che un certo numero di altri gruppi di mammiferi ha iniziato a sfruttare simili habitat arboricoli di rami terminali nel Paleocene, inclusi multitubercolati, eulipotyphlans, dermopterans e plesiadapiforms. Ciò può offrire una spiegazione ecologica per le convergenze morfologiche che hanno portato all'errata inclusione dei pipistrelli all'interno di Archonta: i gruppi ancestrali di archonta così come i proto-pipistrelli apparentemente stavano sfruttando habitat arboricoli simili, il che potrebbe aver portato allo sviluppo simultaneo di attributi morfologici omoplastici.

...............................................................................................................................................

​​

bat.jpg

© 2023 by Alter Band. Proudly created with Wix.com

Villa_Moisa.jpg
bottom of page